Fondo de recuerdo de marca

www.matematicasadministracioneconomia.com

Descripción del problema

Este problema se sitúa en el contexto de la **mercadotecnia** y la **administración** de campañas publicitarias. Una empresa desea medir el **recuerdo** de **marca** después de lanzar una campaña intensa. El nivel de recuerdo se resume mediante un **índice** en escala de 0 a 100 y se observa que dicho índice disminuye con el paso de los días siguiendo una ley **exponencial decreciente**. El análisis se realiza con una función del tipo $R(t) = R_0 e^{-kt}$, donde t representa el tiempo después de la campaña. El objetivo es calcular el **recuerdo** en un instante específico y determinar cuánto tiempo tarda en caer a cierto nivel. Este tipo de modelo ayuda a planear **frecuencia** y **presupuesto** de campañas, y a decidir cuándo es conveniente lanzar nuevos anuncios para mantener la marca en la mente de los consumidores.

Enunciado

El índice de recuerdo de una marca después de una campaña publicitaria se modela por

$$R(t) = 100e^{-t/20},$$

donde R(t) es el índice de recuerdo (de 0 a 100) y t es el número de días transcurridos desde el final de la campaña.

- (a) Encuentre el índice de recuerdo después de 10 días. Redondee al entero más cercano.
- (b) ¿Después de cuántos días el índice de recuerdo baja a 40? Aproxime su respuesta al día más cercano.

Solución detallada

Parte (a): índice después de 10 días

Sustituimos t = 10 en la función:

$$R(10) = 100e^{-10/20} = 100e^{-1/2}$$
.

Calculamos el valor numérico de $e^{-1/2}$:

$$e^{-1/2} \approx 0.60653$$
.

Entonces

$$R(10) \approx 100 \cdot 0,60653 = 60,653.$$

Al redondear al entero más cercano:

$$R(10) \approx 61.$$

Por lo tanto, a los 10 días el índice de recuerdo es aproximadamente 61 puntos.

Parte (b): tiempo para que el índice sea 40

Queremos encontrar t tal que R(t) = 40:

$$40 = 100e^{-t/20}.$$

Primero despejamos el término exponencial dividiendo entre 100:

$$\frac{40}{100} = e^{-t/20} \quad \Rightarrow \quad 0.4 = e^{-t/20}.$$

Aplicamos logaritmo natural en ambos lados:

$$\ln(0,4) = \ln\left(e^{-t/20}\right) = -\frac{t}{20}.$$

Despejamos t:

$$-\frac{t}{20} = \ln(0.4) \implies t = -20 \ln(0.4).$$

Usamos una calculadora:

$$ln(0,4) \approx -0.91629 \implies t \approx -20(-0.91629) = 18,3258.$$

Al redondear al día más cercano:

$$t \approx 18 \text{ días.}$$

Interpretación

El modelo indica que el **recuerdo de marca** disminuye de forma **exponencial** a medida que pasan los días sin nueva publicidad. A los 10 días la mayoría de los consumidores aún recuerdan la campaña con un nivel cercano a 61 puntos sobre 100, pero hacia el día 18 el índice ya ha caído a 40. Esto sugiere que, si la empresa desea mantener un recuerdo superior a 40, debería considerar nuevas acciones de **comunicación** antes de aproximadamente tres semanas. El análisis cuantitativo permite decidir de forma más objetiva la **frecuencia óptima** y la **intensidad** de futuras campañas publicitarias.